Vorlesung Vertiefung (Master)

Nichtlineare Optimierung: Theorie und Verfahren

Dr. Kerstin Dächert

 

Inhalt

In der Vorlesung werden sowohl unrestringierte als auch restringierte nichtlineare Optimierungsprobleme behandelt.

  1. Problemeinführung, Anwendungen und Motivation
  2. Teil I: Unrestringierte Probleme
    • Optimalitätsbedingungen
    • Allgemeine Abstiegsverfahren
    • Konvergenz und Konvergenzgeschwindigkeit
    • Gradientenverfahren
    • Newton Verfahren und Quasi-Newton Verfahren
  3. Teil II: Restringierte Probleme
    • Optimalitätsbedingungen
    • Penalty- und Barriere Verfahren
    • SQP-Verfahren
    • Filter Methods

Es werden sowohl theoretische Hintergründe als auch Algorithmen für die praktische Umsetzung vermittelt.
In den Übungen wird auch die Modellierung praktischer Probleme und die Anwendung verschiedener Optimierungsverfahren geübt.

Voraussetzungen

Das Seminar richtet sich an Studierende im Master Mathematik. Grundkenntnisse in Optimierung werden vorausgesetzt. Außerdem sind Programmierkenntnisse (in Matlab) zur Bearbeitung der
Übungsaufgaben notwendig.

Termine

Vorlesung: Montag 10–12 Uhr c.t. in K2, Dienstag 10–12 Uhr c.t. in K6 (erster Termin 2.5.17)
Übung: Montag 16-18 Uhr c.t. in G 16.15 (14-tägig, erster Termin 15.5.17), Dienstag 8:30–10:00 Uhr in G 14.11 (erster Termin 16.5.17)

Moodle

Link zum Kurs

Literatur

  • S. Boyd und L. Vandenberghe: Convex Optimization, Cambridge University Press 2009, http://web.stanford.edu/~boyd/cvxbook/
  • C. Geiger und C. Kanzow: Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben, Springer 1999
  • C. Geiger und C. Kanzow: Theorie und Numerik restringierter Optimierungsaufgaben, Springer 2002

zuletzt bearbeitet am: 31.08.2017

Weitere Infos über #UniWuppertal: